Serveur d'exploration sur le chant choral et la santé

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular mechanisms of temperature adaptation.

Identifieur interne : 000133 ( Main/Exploration ); précédent : 000132; suivant : 000134

Molecular mechanisms of temperature adaptation.

Auteurs : Sviatoslav N. Bagriantsev [États-Unis] ; Elena O. Gracheva [États-Unis]

Source :

RBID : pubmed:25433072

Descripteurs français

English descriptors

Abstract

Thermal perception is a fundamental physiological process pertaining to the vast majority of organisms. In vertebrates, environmental temperature is detected by the primary afferents of the somatosensory neurons in the skin, which express a 'choir' of ion channels tuned to detect particular temperatures. Nearly two decades of research have revealed a number of receptor ion channels that mediate the perception of several temperature ranges, but most still remain molecularly orphaned. Yet even within this well-researched realm, most of our knowledge largely pertains to two closely related species of rodents, mice and rats. While these are standard biomedical research models, mice and rats provide a limited perspective to elucidate the general principles that drive somatosensory evolution. In recent years, significant advances have been made in understanding the molecular mechanism of temperature adaptation in evolutionarily distant vertebrates and in organisms with acute thermal sensitivity. These studies have revealed the remarkable versatility of the somatosensory system and highlighted adaptations at the molecular level, which often include changes in biophysical properties of ion channels from the transient receptor potential family. Exploiting non-standard animal models has the potential to provide unexpected insights into general principles of thermosensation and thermoregulation, unachievable using the rodent model alone.

DOI: 10.1113/jphysiol.2014.280446
PubMed: 25433072
PubMed Central: PMC4560580


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular mechanisms of temperature adaptation.</title>
<author>
<name sortKey="Bagriantsev, Sviatoslav N" sort="Bagriantsev, Sviatoslav N" uniqKey="Bagriantsev S" first="Sviatoslav N" last="Bagriantsev">Sviatoslav N. Bagriantsev</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT , 06520, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT , 06520</wicri:regionArea>
<wicri:noRegion>06520</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gracheva, Elena O" sort="Gracheva, Elena O" uniqKey="Gracheva E" first="Elena O" last="Gracheva">Elena O. Gracheva</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT , 06520, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT , 06520</wicri:regionArea>
<wicri:noRegion>06520</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT , 06520, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT , 06520</wicri:regionArea>
<wicri:noRegion>06520</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25433072</idno>
<idno type="pmid">25433072</idno>
<idno type="doi">10.1113/jphysiol.2014.280446</idno>
<idno type="pmc">PMC4560580</idno>
<idno type="wicri:Area/Main/Corpus">000140</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000140</idno>
<idno type="wicri:Area/Main/Curation">000137</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000137</idno>
<idno type="wicri:Area/Main/Exploration">000137</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular mechanisms of temperature adaptation.</title>
<author>
<name sortKey="Bagriantsev, Sviatoslav N" sort="Bagriantsev, Sviatoslav N" uniqKey="Bagriantsev S" first="Sviatoslav N" last="Bagriantsev">Sviatoslav N. Bagriantsev</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT , 06520, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT , 06520</wicri:regionArea>
<wicri:noRegion>06520</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gracheva, Elena O" sort="Gracheva, Elena O" uniqKey="Gracheva E" first="Elena O" last="Gracheva">Elena O. Gracheva</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT , 06520, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT , 06520</wicri:regionArea>
<wicri:noRegion>06520</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT , 06520, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT , 06520</wicri:regionArea>
<wicri:noRegion>06520</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of physiology</title>
<idno type="eISSN">1469-7793</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Body Temperature Regulation (physiology)</term>
<term>Humans (MeSH)</term>
<term>Ion Channels (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Canaux ioniques (physiologie)</term>
<term>Humains (MeSH)</term>
<term>Régulation de la température corporelle (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Ion Channels</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Canaux ioniques</term>
<term>Régulation de la température corporelle</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Body Temperature Regulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thermal perception is a fundamental physiological process pertaining to the vast majority of organisms. In vertebrates, environmental temperature is detected by the primary afferents of the somatosensory neurons in the skin, which express a 'choir' of ion channels tuned to detect particular temperatures. Nearly two decades of research have revealed a number of receptor ion channels that mediate the perception of several temperature ranges, but most still remain molecularly orphaned. Yet even within this well-researched realm, most of our knowledge largely pertains to two closely related species of rodents, mice and rats. While these are standard biomedical research models, mice and rats provide a limited perspective to elucidate the general principles that drive somatosensory evolution. In recent years, significant advances have been made in understanding the molecular mechanism of temperature adaptation in evolutionarily distant vertebrates and in organisms with acute thermal sensitivity. These studies have revealed the remarkable versatility of the somatosensory system and highlighted adaptations at the molecular level, which often include changes in biophysical properties of ion channels from the transient receptor potential family. Exploiting non-standard animal models has the potential to provide unexpected insights into general principles of thermosensation and thermoregulation, unachievable using the rodent model alone. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25433072</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-7793</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>593</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of physiology</Title>
</Journal>
<ArticleTitle>Molecular mechanisms of temperature adaptation.</ArticleTitle>
<Pagination>
<MedlinePgn>3483-91</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1113/jphysiol.2014.280446</ELocationID>
<Abstract>
<AbstractText>Thermal perception is a fundamental physiological process pertaining to the vast majority of organisms. In vertebrates, environmental temperature is detected by the primary afferents of the somatosensory neurons in the skin, which express a 'choir' of ion channels tuned to detect particular temperatures. Nearly two decades of research have revealed a number of receptor ion channels that mediate the perception of several temperature ranges, but most still remain molecularly orphaned. Yet even within this well-researched realm, most of our knowledge largely pertains to two closely related species of rodents, mice and rats. While these are standard biomedical research models, mice and rats provide a limited perspective to elucidate the general principles that drive somatosensory evolution. In recent years, significant advances have been made in understanding the molecular mechanism of temperature adaptation in evolutionarily distant vertebrates and in organisms with acute thermal sensitivity. These studies have revealed the remarkable versatility of the somatosensory system and highlighted adaptations at the molecular level, which often include changes in biophysical properties of ion channels from the transient receptor potential family. Exploiting non-standard animal models has the potential to provide unexpected insights into general principles of thermosensation and thermoregulation, unachievable using the rodent model alone. </AbstractText>
<CopyrightInformation>© 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bagriantsev</LastName>
<ForeName>Sviatoslav N</ForeName>
<Initials>SN</Initials>
<AffiliationInfo>
<Affiliation>Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT , 06520, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gracheva</LastName>
<ForeName>Elena O</ForeName>
<Initials>EO</Initials>
<AffiliationInfo>
<Affiliation>Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT , 06520, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT , 06520, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>01</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Physiol</MedlineTA>
<NlmUniqueID>0266262</NlmUniqueID>
<ISSNLinking>0022-3751</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007473">Ion Channels</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001833" MajorTopicYN="N">Body Temperature Regulation</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007473" MajorTopicYN="N">Ion Channels</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>09</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25433072</ArticleId>
<ArticleId IdType="doi">10.1113/jphysiol.2014.280446</ArticleId>
<ArticleId IdType="pii">jphysiol.2014.280446</ArticleId>
<ArticleId IdType="pmc">PMC4560580</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Pain. 2012 Oct;153(10):2017-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22703890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2012 Jan 26;1(1):43-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22347718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pain. 2012;8:36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22571355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(12):e53266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23285272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e55001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23383028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2013 Nov;84(5):736-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24006495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jun 14;447(7146):855-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17568746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 12;448(7150):204-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17538622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2007 Dec 15;585(Pt 3):867-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17962323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2008 Apr 24;58(2):179-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2008 Jul;11(7):772-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18568022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pain. 2010 Aug;150(2):340-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2010 Nov 10;30(45):15165-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21068322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2010 Dec;32(12):2022-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Feb 2;30(3):582-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21139565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Mar 30;31(13):5067-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21451044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Mol Med. 2011 May;3(5):266-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21438154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2011 May 12;70(3):482-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21555074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Apr 14;288(5464):306-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10764638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 May 11;405(6783):183-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10821274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Jun 1;19(11):2483-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2001 Oct 1;21(19):7491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11567039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Feb 8;108(3):421-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11853675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Mar 7;416(6876):52-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11882888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Mar 8;108(5):705-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11893340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Mar 21;112(6):819-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jun 19;423(6942):822-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12815418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jan 15;427(6971):260-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14712238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2004 Jul 14;24(28):6410-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1996 Jan 18;379(6562):257-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8538791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Oct 23;389(6653):816-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9349813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2013 Jan 1;591(1):185-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23027824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2013 Oct 23;33(43):17160-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24155319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Dec 5;504(7478):107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24305160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Dec 5;504(7478):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24305161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(1):e87029</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24466320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2014 Mar;31(3):708-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24398321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1249-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24639527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pain. 2014 May;155(5):896-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24447515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Behav. 2014 May 28;131:93-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24769022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2014 Jun 4;82(5):1017-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24814535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(8):e104458</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25101983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pflugers Arch. 2014 Oct;466(10):1873-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24385018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Sep 11;8(5):1571-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25199828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14941-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25246547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16901-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25389312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2014 Jan 22;34(4):1494-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24453337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jul 10;454(7201):217-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18548007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Aug 1;321(5889):702-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1273-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19144922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 May 6;28(9):1308-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2009 Apr 24;454(2):129-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(5):e5741</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19492038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Apr 15;464(7291):1006-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20228791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2010 Jul;13(7):861-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20512132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2013 Feb 13;33(7):2837-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23407943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2013 Feb 20;77(4):667-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23439120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2013 Mar 27;33(13):5533-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1998 Sep;21(3):531-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9768840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 1999 Mar;11(3):946-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10103088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Feb 15;19(4):419-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2005 Apr 1;564(Pt 1):103-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15677687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2005;135(4):1277-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16165301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Neurol. 2005 Dec 26;493(4):596-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16304633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2006 Jan;9(1):93-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16327782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Mar 24;124(6):1269-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16564016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Jun 7;25(11):2368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2006 Jul;291(1):C138-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16495368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2007 Mar 28;27(13):3366-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2007 May 3;54(3):371-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17481391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2007 May 3;54(3):379-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17481392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pain. 2011;7:37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21586160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Aug 4;476(7358):88-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21814281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Aug 10;31(32):11425-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21832173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Aug 31;30(17):3594-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21765396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):E1184-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21930928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19413-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22087007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Jan 5;481(7379):76-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22139422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2012 Feb 8;32(6):2086-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22323721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Neurosci. 2012 Mar;49(3):375-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22273507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Aug 1;31(15):3297-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22728824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 31;287(36):30743-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22791718</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Bagriantsev, Sviatoslav N" sort="Bagriantsev, Sviatoslav N" uniqKey="Bagriantsev S" first="Sviatoslav N" last="Bagriantsev">Sviatoslav N. Bagriantsev</name>
</noRegion>
<name sortKey="Gracheva, Elena O" sort="Gracheva, Elena O" uniqKey="Gracheva E" first="Elena O" last="Gracheva">Elena O. Gracheva</name>
<name sortKey="Gracheva, Elena O" sort="Gracheva, Elena O" uniqKey="Gracheva E" first="Elena O" last="Gracheva">Elena O. Gracheva</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteChoraleV4/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000133 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000133 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteChoraleV4
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25433072
   |texte=   Molecular mechanisms of temperature adaptation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25433072" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteChoraleV4 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Sat Oct 10 10:36:24 2020. Site generation: Sat Oct 10 10:37:38 2020